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Abstract— This paper is devoted to the scientific study and
engineering application of cyclic systems. Cyclic systems are
non-traditional plants, containing devices with rotating dynam-
ics along with actuators and sensors fixed in inertial space.
The combination of rotating dynamics and inertially-fixed
inputs and outputs leads to one-per-revolution (or stroboscopic)
actuation and sensing. Control of cyclic systems amounts to
designing a regulator that uses stroboscopic actuation and
sensing to force the system into the desired regime. Although
cyclic systems are periodic, the general theory of periodic
control is not immediately applicable due to stroboscopic actu-
ation and sensing. Because of rotating dynamics, the theory of
impulsive control is not applicable as well. This work develops
an approach to the control of systems with both rotating
dynamics and stroboscopic instrumentation, and reports the
initial application to a xerographic process.

I. INTRODUCTION

XEROGRAPHY is the dry ink marking process em-

ployed by photocopying machines and printers. A

photoconducting drum or belt, called the photoreceptor, is

at the heart of this process. To produce a document image,

the photoreceptor undergoes five stages per revolution (see

Fig. 1):

1) Charging, where the photoreceptor is charged to a

voltage.

2) Exposing, where a laser electrostatically writes the

latent image on the photoreceptor surface.

3) Developing, where the toner particles are deposited on

the written image.

4) Transferring, where the toner particles are transferred

from the photoreceptor to paper.

5) Cleaning and erasing, where the photoreceptor is me-

chanically cleaned of toner residue and electrostatically

discharged.

At times, xerographic images exhibit defects such as band-

ing (lines in the cross-process direction), streaking (lines in

the process direction), and ghosting (prior image retention).

These defects have been often attributed to the photoreceptor.

More specifically, photoreceptor-induced defects are caused

by variation in photoreceptor thickness, aging charger, and

imperfect electrostatic erase that leaves residual voltage on

the photoreceptor surface. Ensuring a uniform photoreceptor
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Fig. 1. The photoreceptor system in a xerographic process.

surface voltage will reduce the impact that these factors

have on print quality. The traditional approach to address

the non-uniformity of the surface voltage is to employ better

hardware. The approach in this paper is to employ feedback

control to ensure that the surface voltage is uniform. (Note

that feedback control to alleviate banding has been used in

the past, e.g., [1], using drive motor speed modulation.)

The photoreceptor system is an example of a cyclic system.

Cyclic systems are a non-traditional class of plants, con-

taining devices with rotating dynamics, along with actuators

and sensors that are fixed in inertial space. The combination

of rotating dynamics and inertially-fixed inputs and outputs

leads to a property called stroboscopicity. Stroboscopicity

refers to the one-per-revolution actuation and sensing of

a portion of the rotating device, whenever this portion is

located at either the actuator or the sensor. Thus, inertially-

fixed inputs and outputs result in actuation and sensing

that are similar to a stroboscope. In xerography, portions

of the rotating photoreceptor are charged (i.e., actuated),

exposed, developed, transferred, erased and cleaned, and

electrostatically and optically measured (i.e., sensed) once

per revolution, whenever the portion passes under the devices

corresponding to the actuations and sensing [2]. Thus, to

guarantee the desired performance of the photoreceptor as a

cyclic system, a controller employing stroboscopic sensing

and actuation must be designed.

Cyclic systems arise naturally in other subsystems of the

xerographic process and in other practical applications as

well. These include:

• The toner replenishment stage of the xerographic pro-

cess, which requires that toner mass be transferred
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onto a rotating roll prior to image development on the

photoreceptor. The quantity of toner mass on the surface

of the roll may be sensed stroboscopically, and the

requisite mass transfer takes place stroboscopically as

well [3]. Hence, the roll is a cyclic system. The fuser in

the xerographic process is also cyclic — the temperature

of the rotating fuser is measured stroboscopically, and

heat is applied in a stroboscopic manner [4].

• Printing press processes are similar to the xerographic

toner and fuser heat control processes described above.

• Drilling and milling machines can also be viewed as

cyclic systems. Similarly, a turbomachine, where each

rotating blade in a turbofan engine encounters fast-

moving air, is a cyclic system too.

The amount of variation of a field variable (charge,

voltage, mass, heat etc.) over the surface of the rotating

device is often employed as a performance metric for the

cyclic system. For instance, during the exposure stage of the

xerographic process, uniformity of the photoreceptor surface

charge in both circumferential and axial directions is desired.

Likewise, in the toner replenishment stage, the uniform

distribution of toner mass along the surface of the roll must

be guaranteed because inconsistent toner mass distribution

results in images with varying contrast. Finally, during the

fusing stage, a uniform temperature along the surface of the

fuser is required to enable the even appearance of the image

on paper. Similar performance metrics can be formulated for

the other applications mentioned above. These performance

metrics may be used to evaluate and compare the efficacy

of traditional hardware-based approaches to novel feedback-

control approaches.

Accordingly, the goals of this paper are:

• The mathematical modeling of cyclic systems taking

into account the device’s rotating dynamics as well as

stroboscopic actuation and sensing.

• Stability and controllability analysis of cyclic systems.

• Controller design.

• The application and verification of the results via sim-

ulations using experimental data.

Although there is a vast body of literature on periodic

control systems (see [5] and references therein), cyclic sys-

tems form a specific category of such systems because of

the stroboscopic nature of actuation and sensing. The stro-

boscopicity of control is similar to that of impulsive control

systems [6]. However, cyclic systems include devices with

rotating dynamics, and these types of plants have not been

investigated in the traditional impulsive control literature.

This paper presents initial results on the control of systems

with rotating dynamics and stroboscopic instrumentation.

The remainder of this work is organized as follows:

Section II discusses the modeling and control of cyclic

systems, focusing on the properties of stabilizability and

disturbance rejection. Section III illustrates the application

of the approach to a xerographic system, presenting the

results of experiments and controller design. For proprietary

reasons, all data have been represented with symbols.

II. MODELING AND CONTROL OF CYCLIC

SYSTEMS

A. Modeling

The mathematical model of a cyclic system is generally

infinite-dimensional. Such a model, while analytically feasi-

ble, is not always computationally tractable. A lumped pa-

rameter approach to modeling is therefore necessary, where

the surface of the rotating device is divided into N discrete

wedges (see Fig. 2). Thus, describing the field variable of

the rotating device reduces to describing the average value

of the field variable on a wedge.

Sensor, y(t)Actuator, u(t)
xi x1

x2

xN

. . .

. . .

Fig. 2. Lumped model of a rotating device in a cyclic system.

We model the stroboscopic actuators and sensors by

defining a stroboscope function as follows:

stri(t) =

{

1, t ∈ [τ (Nk + i−1) ,τ (Nk + i)) ,

0, otherwise,
(1)

i = 1,2, . . . ,N; k = 0,1, . . . ,

where τ is the duration of the strobe and k is the rotation

number. Hence, stri(t) is zero except when the ith wedge is

actuated or sensed.

For simplicity, assume that the field variable on each

wedge has first order dynamics. Since each wedge interacts

circularly with the other wedges of the rotating device, the

resulting scalar equations are

ẋ1(t) = a1x1(t)+a2x2(t)+ . . .+aNxN(t)+bu(t) · str1(t),

(2)

ẋ2(t) = aNx1(t)+a1x2(t)+ . . .+aN−1xN(t)+bu(t) · str2(t),
(3)

. . .

ẋN(t) = a2x1(t)+ . . .+aNxN−1(t)+a1xN(t)+bu(t) · strN(t),
(4)

y(t) =
N

∑
i=1

cxi (t) · str(i+Js)modN(t), (5)

where xi, 1 ≤ i ≤ N, is the state of the ith wedge, i.e., the

value of the field variable on that wedge; a1 is the inverse

of the time constant of the decay of the field variable in a

wedge; a j, 2 ≤ j ≤ N, represents the interaction between the

field variable in a wedge and the field variable in the wedge

j−1 wedges behind; b is the actuator gain; c is the sensor

gain, u(t) is the actuator input; y(t) is the sensor output; and

Js is the number of wedges that the sensor is offset from the
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actuator. If Js = 0, the actuator and sensor are collocated;

otherwise, they are non-collocated. Non-collocation is more

typical than collocation due to physical constraints on the

placement of actuators and sensors.

From (2)-(4), the plant matrix of this cyclic system is

A =











a1 a2 . . . aN

aN a1 . . . aN−1

...
...

. . .
...

a2 . . . aN a1











. (6)

Matrices of this form are called circulant because each row

is a circular permutation of the previous row. Hence, the

circular wedge-to-wedge interactions in the physical model

of a cyclic system induces circulancy in the mathematical

model of the dynamics of the cyclic system.

Circulant matrices possess important properties; specif-

ically, they form a commutative algebra. Moreover, the

following three properties [7] are significant for the stability

analysis of the systems at hand.

1) Let W be the trivial circulant matrix,

W :=











0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0











. (7)

Then any circulant matrix (6) can be represented as a

linear combination of powers of W , i.e.,

A = f (W ) = a1W 0 +a2W 1 + . . .+aNW N−1. (8)

2) The eigenvalues of the matrix W , w1, w2, . . . , wN , are

the Nth roots of 1. The eigenvalues of the circulant

matrix A are given by f (wi), 1 ≤ i ≤ N, where f (·) is

defined in (8).

3) The circulant matrix A in (6) is Hurwitz if and only if

the coefficients a1, a2, . . . , aN satisfy the following N

linear inequalities:

Re(a1 +a2wi + . . .+aNwN−1
i ) < 0, 1 ≤ i ≤ N. (9)

Thus, stability analysis of the lumped parameter model

of a cyclic system amounts to verifying the set of linear

inequalities (9), rather than nonlinear inequalities arising

from the Routh-Hurwitz criterion.

B. Stabilizability

For the sake of clarity, the remainder of this section uses

an N-wedge model of a cyclic system that omits wedge

interactions. There is a strong rationale for this assumption:

wedge interactions in xerographic processes have been ex-

perimentally verified to be weak.

Under this assumption, the system equations (2)-(5) be-

come:

ẋ1(t) = a1x1(t)+(b · str1 (t))u(t), (10)

. . .

ẋN(t) = a1xN(t)+(b · strN (t))u(t), (11)

y(t) = (c · str1+Js (t))x1 (t)+ . . .+(c · strN+Js (t))xN (t) . (12)

Assuming that no disturbance affects any wedge between

the instants of actuation and sensing, and recognizing that

instantaneous feedback u(t) = −Ky(t) will have limited

stabilizing capability in the non-collocated case, we use the

time-delayed output feedback,

u(t) = −Ky(t − Jsτ), (13)

where 0 ≤ Js ≤ N − 1. With this feedback, we obtain the

following closed loop equations:

ẋ1(t) = (a1 −bKc · str1 (t))x1(t), (14)

. . .

ẋN(t) = (a1 −bKc · strN (t))xN(t), (15)

which imply that the closed loop system is periodic.

A straight-forward calculation yields the following mon-

odromy matrix, M, the state transition matrix over the period:

M =











e(Na1−bKc)τ 0 . . . 0

0 e(Na1−bKc)τ . . . 0
...

...
. . .

...

0 0 . . . e(Na1−bKc)τ











. (16)

Therefore, a necessary and sufficient condition for the

stability of (14)-(15) is

max
i

|λi| < 1, (17)

where λi denotes the ith eigenvalue of M. This implies that

the cyclic feedback ensures asymptotic stability if and only

if

K >
Na1

bc
. (18)

Hence, with time-delayed output feedback, the cyclic system

with no wedge interactions is stabilizable by output feedback.

Note that it is not stabilizable by instantaneous output

feedback.

In the general case of N interacting wedges, it can be

shown that the monodromy matrix is similar to a circulant

matrix. This implies that stabilizability can be analyzed using

properties 1)-3) of Subsection II-A.

C. Disturbance Rejection

Time-delayed output feedback also enables the rejection

of disturbances at the input of the actuator. Modifying the

cyclic system (10)-(12) to include these disturbances yields

the following equations:

ẋ1(t) = a1x1(t)+(b · str1 (t))u(t)+(e · str1 (t))d(t), (19)

. . .

ẋN(t) = a1xN(t)+(b · strN (t))u(t)+(e · strN (t))d(t), (20)

y(t) = (c · str1+Js (t))x1 (t)+ . . .+(c · strN+Js (t))xN (t) , (21)

where e ·d(t) is the disturbance.
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During each actuation interval, we wish to minimize the

effect of the disturbance at the output while ensuring stability.

That is, we consider the optimization problem

min
K

∥

∥Gdy(s)
∥

∥

2

2
, (22)

subject to K >
Na1

bc
, (23)

where Gdy(s) is defined as

Gdy(s) :=
ce

s−a1 +bKc
. (24)

In other words, the optimization problem (22)-(23) is

min
K

∥

∥Gdy(s)
∥

∥

2

2
= min

K

c2e2

2(a1 −bKc)2
, (25)

subject to K >
Na1

bc
. (26)

Clearly, this problem has no solution, but the cost function

can be made arbitrarily small by selecting K sufficiently high.

Therefore, in cyclic systems with no wedge interactions, it

is possible to reject disturbances to any desired level using

time-delayed output feedback with sufficiently large gain K.

The results of this section indicate that stroboscopicity

in actuation and sensing do not diminish the efficacy of

feedback control in the case of no wedge interactions.

III. APPLICATION TO XEROGRAPHY

A. Experimental Modeling of the Photoreceptor as a Cyclic

System

A number of experiments were conducted at the Xerox

Research Center in Webster, New York on a physical system

that exhibited all of the cyclic features described above.

This system was also representative of the technology used

in most current xerographic products. To facilitate the ex-

periments, the machine was instrumented with sensors and

actuators that are not found in the off-the-shelf product. In

particular, an electrostatic voltmeter (ESV) and an optical

toner mass sensor (OTMS) were used to measure the voltage

and toner mass density on the surface of the photoreceptor,

respectively. In addition, an optical scanner was used to

measure the print uniformity on the output page.

The first set of experiments focused on model development

through system identification. This involved applying various

signals at the input (the charger) and measuring the output

at different locations (the ESV, the OTMS and the printed

page). Signals used included sinusoids and pseudo-random

binary noise. The results gave information on the dynamic

behavior of the photoreceptor, and thus helped determine the

model structure and parameters. Specifically, the experiments

helped identify the following:

• The inverse of the time constant of a single wedge, i.e.,

a1 in (10)-(11).

• The absence of coupling between wedges.

• The size of the wedge to achieve the performance

requirement, or equivalently, the number of wedges, N,

in (10)-(11).

The second series of experiments studied the sources

of disturbance that affect the photoreceptor, and how they

manifest at the output, i.e., the print quality. A test was

carried out in which one hundred sheets of a halftone image

were printed. In perfect conditions, this type of print job

would produce completely uniform voltage on the surface of

the photoreceptor, uniform toner mass density, and a uniform

visual image on the printed page. This experiment produced

two important conclusions.

1) Variations in the surface voltage are highly correlated

with variations in toner mass, and subsequently, with

uniformity on the printed page.

2) Many distinct noise sources contribute to variations in

surface voltage.

The first conclusion is important since it confirms that

fluctuations in the surface voltage are responsible for defects

in the output print. The second conclusion helps refine

the model by clarifying which disturbances cause these

fluctuations. In particular, we obtained the spatial spectrum

of the output print, shown in Fig. 3. This figure depicts three

significant peaks at low frequency. Other than the peak at

ωm, which is likely caused by the toner transfer mechanical

system, the dominant frequency components occur at ωpr

and ωc, which correspond to the periods of rotation of

the photoreceptor and charger, respectively. Hence, it is

determined that parametric variation along the surface of the

photoreceptor is the primary source of voltage fluctuation.

Frequency (Hz)

|Y
(f

)|

ω
m

ω
c

ω
pr

Fig. 3. Spectrum of the output print.

Accordingly, a mathematical model of the photoreceptor

cyclic system was formulated, with the goal of duplicating

the experimental observations. This model includes two key

features:

1) To simulate the photoreceptor voltage, the effect of

erase is taken into account explicitly while the effects

of all other stages are modeled as a disturbance.

2) To account for the fact that charging occurs only

if the voltage difference between the charger and

photoreceptor is above a certain threshold, a deadzone

nonlinearity is used.
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As a result, we obtain the following model:


















ẋi(t) = a1xi(t)+bivi(t) · stri(t)+ f (t) · str(i+Je)modN (t) ,

t ∈ [τ (Nk + i−1) ,τ (N (k +1)+ i−1)),

xi (τ (Nk + i−1)) = Vresi
,

(27)

for k = 0,1,2, . . . ;1 ≤ i ≤ N, with

y(t) =
N

∑
i=1

xi (t) · str(i+Js)modN (t)+ ε (t) . (28)

The first equation in (27) describes the behavior of the

voltage of the ith wedge, while the second models the erase,

where Vresi
is the residual voltage of the ith wedge after the

erase stage. In (27), f (t) is intended to represent the effects of

expose, develop and transfer on the photoreceptor, while vi(t)
is the charging (control) input accounting for the deadzone

nonlinearity, defined by

vi(t) = γ (DZi (ui (t)− xi (t))) , γ > 0, (29)

where ui(t) is the voltage applied by the charger to the ith

wedge and DZi is the deadzone function of the ith wedge,

given by

DZi (ui (t)− xi (t)) =































α(ui (t)− xi (t)−
δi
2
),

ui (t)− xi (t) ≥
δi
2
, α > 0,

0,
−δi

2
< ui (t)− xi (t) <

δi
2
,

α(ui (t)− xi (t)+ δi
2
),

ui (t)− xi (t) ≤
−δi

2
, α > 0.

(30)

In (30), δi and α are the parameters of the nonlinearity.

Finally, (28) models the reading of the ESV where ε(t) is

measurement noise.

Note that the width of the deadzone, δi, differs from wedge

to wedge, and is the primary source of variation in voltage

along the surface of the photoreceptor. The variability in the

deadzone width results from nonuniformity in the thickness

of the photoreceptor, which in turn leads to variation in the

electric field generated by the charger.

The specific parameters in (27)-(30) are identified through

experimentation and physical knowledge of the system. In

particular, the single-wedge parameters a1 and bi are ob-

tained through classical system identification techniques. The

parameters τ , Je and Js are obtained from physical mea-

surements. The deadzone width nonuniformity is modeled

by observing that the surface of the photoreceptor exhibits

voltage variation of ±∆var.

B. Disturbance Rejection Controller and Its Verification

Using the model (27)-(30) with, for simplicity, N = 3,

the performance of the photoreceptor has been analyzed

numerically in four scenarios:

1) Open loop with perfect erase, i.e., with ui(t) = constant,

and Vresi
= 0.

2) Closed loop using cyclic feedback, assuming perfect

knowledge of the photoreceptor parameters and perfect

erase, i.e., with a1 = anom and Vresi
= 0. The cyclic

feedback in this and the two subsequent scenarios is

given by

ui (t) = ui (t −Nτ)+Vnom

− y((N (k−1)+ Js + i−1)τ) , (31)

where t ∈ [Nkτ, N(k +1)τ), k = 1,2, . . ..

3) Closed loop using cyclic feedback, assuming per-

fect knowledge of the photoreceptor parameters, but

imperfect (random) erase, i.e., with Vresi
distributed

uniformly on the interval [−V ∗
res,V

∗
res].

4) Closed loop using cyclic feedback, assuming imperfect

knowledge of the photoreceptor parameters and perfect

erase, i.e., with Vresi
= 0 and a1 = 1.5anom.

The results are shown in Figs. 4-7, respectively. In these

figures, the top portion shows the time history of the surface

voltage of each wedge, xi, over five revolutions of the

photoreceptor, while the bottom portion shows the sampled

time history of the measurement, y. In both portions of these

figures, the experimentally measured voltage variation ±∆var

around the target voltage Vnom is indicated by dotted lines.

In the top portion of each figure, the surface voltage of each

wedge undergoes three stages per revolution: a charge to a

negative target voltage Vnom, an electrostatic discharge during

which the measurement is taken, and a reset to the target

charge of Vres.

Vnom

Time [τ]

x
i [

V
]

 

 
x

1

x
2

x
3

Vnom

Time [τ]

y
 [

V
]

Fig. 4. Behavior of the photoreceptor in Scenario 1.

Vnom

Time [τ]

x
i [

V
]

 

 
x

1

x
2

x
3

Vnom

Time [τ]

y
 [

V
]

Fig. 5. Behavior of the photoreceptor in Scenario 2.

The performance specification for the controller design is

to reduce the voltage variation around its steady-state value

from ±∆var to ±∆des, where ∆des < ∆var. In the bottom

portion of Figs. 4-7, the acceptable voltage variation interval

around the steady-state voltage is indicated by dashed lines,

while the behavior of the output y(t) is indicated by the thick

curve.
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Vnom

Time [τ]

x
i [

V
]

 

 
x

1

x
2

x
3

Vnom

Time [τ]

y
 [

V
]

Fig. 6. Behavior of the photoreceptor in Scenario 3.

Vnom

Time [τ]

x
i [

V
]

 

 
x

1

x
2

x
3

Vnom

Time [τ]

y
 [

V
]

Fig. 7. Behavior of the photoreceptor in Scenario 4.

A comparison of Figs. 4 and 5 indicates that the cyclic

control law (31) meets the controller design specification

assuming perfect knowledge of wedge dynamics and perfect

erase.

To assess the robustness of the controller (31) with respect

to imperfect erase, assume that, in Scenario 3 above, the

wedges are randomly reset, yielding a sample time history

of wedge voltages shown in Fig. 8. In this scenario, the

performance of the controller is illustrated in Fig. 6, which

shows that the controller is capable of rejecting the distur-

bance caused by imperfect erase.

Vnom

0

Time [τ]

x
i [

V
]

 

 

x
1

x
2

x
3

Fig. 8. Sample time history of wedge voltages with random reset.

To assess the robustness with respect to uncertainty in

knowledge of wedge dynamics, i.e., uncertainty in a1, we

apply the controller (31) to a model (27) where the parameter

a1 has been perturbed from its nominal value by +50%. In

this case, the performance of the controller is illustrated in

Fig. 7. Note that, although the steady-state output voltage is

Vnom

Time [τ]

x
i [

V
]

 

 
x

1

x
2

x
3

Vnom

Time [τ]

y
 [

V
]

Fig. 9. Behavior of the photoreceptor with measurement noise.

biased with respect to Vnom, the voltage variation around that

steady-state meets the controller specification.

The effect of measurement noise has also been inves-

tigated. It is easy to demonstrate a trade-off between the

sensitivity and complementary sensitivity of the closed loop

equations of the cyclic system. Indeed, by changing the

controller gain, the variance of the wedge voltages is reduced

to meet performance specifications at the expense of taking

a greater number of revolutions to track Vnom (see Fig. 9).

IV. CONCLUSIONS AND FUTURE WORK

This paper developed an approach to the control of sys-

tems with rotating dynamics and stroboscopic instrumenta-

tion. The initial results of application to a xerographic pro-

cess are reported and it is shown that time-delayed feedback

ensure the required properties of stability, robustness and

disturbance rejection.

The theoretical part of the future work will include devel-

opment of the general theory of stabilizability, controllability

and observability of cyclic systems. From the application

point of view, this work will include verification of the con-

trols using an infinite dimensional model of a cyclic system,

and experimental verification using an actual xerographic

product.
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